Neural avalanches at the edge-of-chaos?
نویسندگان
چکیده
Does the brain operate at criticality, to optimize neural computation? Literature uses different fingerprints of criticality in neural networks, leaving the relationship between them mostly unclear. Here, we compare two specific signatures of criticality, and ask whether they refer to observables at the same critical point, or to two differing phase transitions. Using a recurrent spiking neural network, we demonstrate that avalanche criticality does not necessarily lie at edge-of-chaos.
منابع مشابه
Self-organized criticality in neural network models
Information processing by a network of dynamical elements is a delicate matter: Avalanches of activity can die out if the network is not connected enough or if the elements are not sensitive enough; on the other hand, activity avalanches can grow and spread over the entire network and override information processing as observed in epilepsy. Therefore, it has long been argued that neural network...
متن کاملIs cortical criticality unique?
There are indications that for optimizing neural computation, neu-ral networks-including the brain-operate at criticality. Previous approaches have, however, used diverse fingerprints of criticality, leaving open the question whether they refer to a unique critical point or whether there could be several. Using a recurrent spiking neural network as the model, we demonstrate that avalanche criti...
متن کاملAnalysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory
Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...
متن کاملHow self - organized criticality may lead to dynamic load - balancing
This paper studies a self-organized criticality model called sandpile for dynamically load-balancing tasks arriving in the form of Bag-of-Tasks in large-scale decentralized system. The sandpile is designed as a decentralized agent system characterizing a cellular automaton, which works in a critical state at the edge of chaos. Depending on the state of the cellular automaton, different response...
متن کاملNeuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed...
متن کامل